Abstract

IntroductionCompartmental modelling is an established method of quantifying 18F-FDG uptake; however, only recently has it been applied to evaluate pulmonary inflammation. Implementation of compartmental models remains challenging in the lung, partly due to the low signal-to-noise ratio compared to other organs and the lack of standardisation. Good reproducibility is a key requirement of an imaging biomarker which has yet to be demonstrated in pulmonary compartmental models of 18F-FDG; in this paper, we address this unmet need.MethodsRetrospective subject data were obtained from the EVOLVE observational study: Ten COPD patients (age =66±9; 8M/2F), 10 α1ATD patients (age =63±8; 7M/3F) and 10 healthy volunteers (age =68±8; 9M/1F) never smokers. PET and CT images were co-registered, and whole lung regions were extracted from CT using an automated algorithm; the descending aorta was defined using a manually drawn region. Subsequent stages of the compartmental analysis were performed by two independent operators using (i) a MIAKATTM based pipeline and (ii) an in-house developed pipeline. We evaluated the metabolic rate constant of 18F-FDG (Kim) and the fractional blood volume (Vb); Bland-Altman plots were used to compare the results. Further, we adjusted the in-house pipeline to identify the salient features in the analysis which may help improve the standardisation of this technique in the lung.ResultsThe initial agreement on a subject level was poor: Bland-Altman coefficients of reproducibility for Kim and Vb were 0.0031 and 0.047 respectively. However, the effect size between the groups (i.e. COPD, α1ATD and healthy subjects) was similar using either pipeline. We identified the key drivers of this difference using an incremental approach: ROI methodology, modelling of the IDIF and time delay estimation. Adjustment of these factors led to improved Bland-Altman coefficients of reproducibility of 0.0015 and 0.027 for Kim and Vb respectively.ConclusionsDespite similar methodology, differences in implementation can lead to disparate results in the outcome parameters. When reporting the outcomes of lung compartmental modelling, we recommend the inclusion of the details of ROI methodology, input function fitting and time delay estimation to improve reproducibility.

Highlights

  • Compartmental modelling is an established method of quantifying 18F-FDG uptake; only recently has it been applied to evaluate pulmonary inflammation

  • We investigated the reproducibility of pulmonary compartmental modelling of inflammation using two independent analysis pipelines; Kim and Vb were the main outcome parameters of this study, Kim was interpreted as a surrogate for lung inflammation

  • Reproducibility of analysis is an important pre-requisite for an imaging biomarker; the results of this evaluation demonstrate the need for standardisation when applying compartmental modelling to assess lung inflammation

Read more

Summary

Introduction

Compartmental modelling is an established method of quantifying 18F-FDG uptake; only recently has it been applied to evaluate pulmonary inflammation. Good reproducibility is a key requirement of an imaging biomarker which has yet to be demonstrated in pulmonary compartmental models of 18F-FDG; in this paper, we address this unmet need. Interpretation is further confounded by FDG within pulmonary blood, which in the healthy lung is substantially larger (typically 15–20%) than other organs, e.g. the brain (typically 5%). Static measures, such as the standard uptake value (SUV), are likely to be heavily influenced by these factors which has led to the exploration of alternative methods that account for these effects [4]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call