Abstract

BackgroundThe utility of cervical electrical impedance spectroscopy (EIS) as a diagnostic tool is being investigated in clinical trials. We sought to assess the reliability of two different sizes of tetrapolar probes used in measuring cervical impedance.MethodsCervical transfer impedance was measured at 14 frequencies between 76 and 625 000 Hz from 11 pregnant subjects at term. Repeated measurements were taken with two probes (3 mm and 12 mm diameter) applied softly (approximately 0.7 Newton of force), and firmly (approximately 2.2 Newton) to the surface of the cervix by two observers. The intra-class correlation coefficient (ICC), coefficient of variation (CV) and repeatability standard deviations (SD) were derived from these measurements and compared.ResultsMeasurements taken by one observer were highly repeatable for both probes as demonstrated by high ICC and low CV values. Probe performance was improved further by firm application. Firm application of the 3 mm probe resulted in ICC values that ranged from 0.936 to 0.986 (p = 0.0001) and CV values between 1.0 and 3.4%. Firm pressure with the 12 mm probe resulted in ICC values that ranged between 0.914 and 0.988 (p = 0.0001) with CV values between 0.7 and 2.1%. In addition, the repeatability SD was low across all frequencies implying that there was low intra-observer variability. Measurements taken by 2 observers with firm application of the 12 mm probe demonstrated moderate reproducibility between 9.8 and 156 kHz, the frequency range in which previous clinical studies have shown predictive association between high cervical resistivity and vaginal delivery: ICC values ranged between 0.528 and 0.638 (p < 0.05), CV values were between 3.3 and 5.2% and reproducibility SD values were also low. In contrast the 3 mm probe demonstrated poor reproducibility at all study frequencies.ConclusionMeasuring cervical resistivity by a single observer with both the 3 and 12 mm probes is highly repeatable whilst inter-observer reproducibility is poor with the 3 mm probe but moderately good when the 12 mm probe is firmly applied to the cervix in the frequency range 9.8 to 156 kHz, consistent with our observations of probe performance in clinical trials.

Highlights

  • The utility of cervical electrical impedance spectroscopy (EIS) as a diagnostic tool is being investigated in clinical trials

  • When the probe was firmly applied to the cervix the Intra-class correlation coefficients (ICC) values were excellent and ranged from 0.936 to 0.986 (p = 0.0001) with coefficient of variation (CV) values between 1.0 and 3.4%

  • Firmer application of the probe improved the repeatability with ICC values of 0.914 to 0.988 (p = 0.0001) and CV values of 0.7 to 2.1% for the first 13 frequencies

Read more

Summary

Introduction

The utility of cervical electrical impedance spectroscopy (EIS) as a diagnostic tool is being investigated in clinical trials. At frequencies of a few kHz to 1 MHz, cell structures are the main determinant of tissue impedance [1] These principles form the basis of the technique of electrical impedance spectroscopy (EIS). If the changes associated with pre-labour cervical remodelling were shown to be accurately captured by measuring cervical tissue electrical resistivity this technique could find clinical application for the prompt prediction and diagnosis of preterm labour. Such advance may enable earlier therapeutic intervention to prevent preterm birth, the principal cause of perinatal death and childhood handicap worldwide

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call