Abstract

To methodically evaluate the reproducibility and accuracy of coronary arterial calcification measurements by using spiral multi-detector row and electron-beam computed tomography (CT) with a beating heart phantom. A phantom was built to mimic a beating heart with coronary arteries and calcified plaques. The simulated vessels moved in a pattern similar to that of a beating heart. The phantom operated at a variety of pulse rates (0-140 beats per minute). The phantom was repeatedly scanned in various positions by using various protocols with electron-beam and multi-detector row CT scanners to assess interexamination variability. Statistical analysis was performed to determine significant differences in interexamination variability for various acquisition protocols. Electrocardiographically (EKG) gated volume coverage with spiral multi-detector row CT (2.5-mm collimation) and overlapping image reconstruction (1-mm increment) was found to significantly improve the reliability of coronary arterial calcium quantification, especially for small plaques (P <.05). Mean interexamination variability was reduced from 35% +/- 6 (SD) (Agatston score, standard electron-beam CT) to 4% +/- 2 (P <.05) (volumetric score, spiral EKG-gated multi-detector row CT). By coupling retrospective gating with nearly isotropic volumetric imaging data, spiral multi-detector row CT provides better input data for quantification of coronary arterial calcium volume. Multi-detector row CT allows precise and repeated measurement of coronary arterial calcification, with low interexamination variability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call