Abstract

AbstractThermoset polyurethanes (PUs) pose recycling challenges due to their crosslinked structure. This study investigates the possibility to directly reprocess PU foams through (dynamic) carbamate exchange using reactive extrusion. By varying compounding temperature and catalyst (dibutyltin dilaurate, DBTDL) concentration, the extrusion process is examined using torque measurements. We clearly show that it is possible to reprocess the PU foam at temperatures well below 200°C and that DBTDL catalyst greatly enhances bond exchange rates during compounding. Reproducible extrusions at 160°C with 0.3 wt% DBTDL result in a material with a gel fraction of 0.90 displaying typical dynamic covalent network behavior, as confirmed by stress relaxation measurements. The measured characteristic relaxation times display an Arrhenius‐type temperature dependence with an activation energy of 41 kJ/mol. Successful extrusion of fully crosslinked PU foam at milder temperatures with DBTDL catalyst demonstrates potential for PU foam recycling using reactive extrusion, and generally highlights the feasibility of dynamic crosslink reconfiguration for waste reduction and improved sustainability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.