Abstract
In this article, we describe a parallel agent-based model of spatial opinion diffusion that is driven by graphics processing units (GPUs). Modeling opinion exchange and diffusion across landscapes often involves the simulation of large numbers of geographically located individual decision-makers and a massive number of individual-level interactions. This simulation requires substantial computational power. GPU-enabled computing resources provide a massively parallel processing platform based on a fine-grained shared memory paradigm. This massively parallel processing platform holds considerable promise for meeting the computing requirement of agent-based models of spatial problems. In this article, we focus on the parallelization of an agent-based spatial opinion model using GPU technologies. We discussed key algorithms designed for parallel agent-based opinion modeling: including domain decomposition and mutual exclusion. Experiments conducted to examine computing performance show that GPUs provide a computationally efficient alternative to traditional parallel computing architectures and substantially accelerate agent-based models of large-scale opinion exchange among individual decision makers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.