Abstract

Interacting magnetic nanoparticles display a wide variety of magnetic behaviors ranging from modified superparamagnetism, superspin glass to possibly, superferromagnetism. The superspin glass state is described by its slow and out-of-equilibrium magnetic behaviors akin to those found in atomic spin glasses. In this article, recent experimental findings on superspin correlation length growth and the violation of the fluctuation-dissipation theorem obtained in concentrated frozen ferrofluids are presented to illustrate certain out-of-equilibrium dynamics behavior in superspin glasses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.