Abstract

A general methodology, which consists in deriving two-dimensional finite-difference schemes which involve numerical fluxes based on Dirichlet-to-Neumann maps (or Steklov–Poincaré operators), is first recalled. Then, it is applied to several types of diffusion equations, some being weakly anisotropic, endowed with an external source. Standard finite-difference discretizations are systematically recovered, showing that in absence of any other mechanism, like e.g. convection and/or damping (which bring Bessel and/or Mathieu functions inside that type of numerical fluxes), these well-known schemes achieve a satisfying multi-dimensional character.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.