Abstract

In this paper, the performance of a radial flow reformer is analyzed. Fundamental principles of reaction engineering are utilized to design this reactor where methane is reformed to produce sufficient hydrogen to generate 20 W of power in a fuel cell. It is shown that the radial flow geometry leads to modest pressure drop. The reactor operates at a pressure of 150 kPa, a steam to methane ratio of 3 and an inlet temperature of 848 K and is able to generate sufficient hydrogen for 20 W of power. The heat duty required for the reformer is approximately 43% of the power generated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call