Abstract

The cob operon encodes functions needed for the biosynthesis of adenosylcobalamin (Ado-B12). Propanediol induces transcription of the cob operon and the neighboring pdu operon, which encodes proteins for the B12-dependent degradation of propanediol. Expression of the cob (but not the pdu) operon is repressed by exogenous cyanocobalamin. Evidence is provided that cob operon repression is signaled by internally generated Ado-B12, which can be formed either by the CobA adenosyltransferase or by an alternative adenosyltransferase (AdoT) that we infer is encoded within the pdu operon. Repression is also affected by mutations (AdoB) in the pdu operon that map upstream of the inferred pdu adenosyltransferase gene. Such mutations allow cobalamin to mediate repression at concentrations 100-fold lower than those needed in the wild type. It is proposed that these mutations eliminate a component of the propanediol dehydratase enzyme complex (PduCDE) and that this complex competes with the cob regulatory mechanism for a limited supply of Ado-B12.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.