Abstract

Excess Cdt1 reportedly induces rereplication of chromatin in cultured cells and Xenopus egg extracts, suggesting that the regulation of Cdt1 activity by cell cycle-dependent proteolysis and expression of the Cdt1 inhibitor geminin is crucial for the inhibition of chromosomal overreplication between S phase and metaphase. We analyzed the consequences of excess Cdt1 for DNA replication and found that increased Cdt1 activity inhibited the elongation of nascent strands in Xenopus egg extracts. In Cdt1-supplemented extracts, overreplication was remarkably induced by the further addition of the Cdt1-binding domain of geminin (Gem79-130), which lacks licensing inhibitor activity. Further analyses indicated that fully active geminin, as well as Gem79-130, restored nascent strand elongation in Cdt1-supplemented extracts even after the Cdt1-induced stalling of replication fork elongation had been established. Our results demonstrate an unforeseen, negative role for Cdt1 in elongation and suggest that its function in the control of replication should be redefined. We propose a novel surveillance mechanism in which Cdt1 blocks nascent chain elongation after detecting illegitimate activation of the licensing system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.