Abstract

A fundamental question in developmental biology is how signaling pathways establish a transcription factor code that controls cell proliferation, regional fate and cell fate. Morphogenesis of the rostral telencephalon is controlled in part by Fgf signaling from the rostral patterning center. How Fgf signaling is regulated in the telencephalon is critical for understanding cerebral cortex formation. Here we show that mouse Sprouty1 and Sprouty2 (Spry1-2), which encode negative feedback regulators of Fgf signaling, are affecting cortical proliferation, differentiation, and the expression of genes regulating progenitor identity in the ventricular zone. In addition, Spry2 has a later function in regulating the MAPK pathway, proliferation, and gene expression in the cortex at mid-neurogenesis. Finally, we provide evidence that Coup-TFI, a transcription factor that promotes caudal fate, does so through repressing Fgf signaling, in part by promoting Spry expression.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.