Abstract

Retinoids are potent immune modulators that inhibit Fas ligand (FasL) expression and thereby repress the activation-induced apoptosis of immature thymocytes and T-cell hybridomas. In this study, we demonstrate that all-trans-retinoic acid (all-trans-RA) directly represses the transcriptional activity of the nuclear factors of activated T-cells (NFAT), which is an important transactivator of the FasL promoter. The analysis of reporter constructs containing the FasL promoter and wild-type or mutant NFAT binding-sites indicated that all-trans-RA repression was mediated via an NFAT binding element located in the promoter. A reporter construct comprising the NFAT binding sequence linked to a heterologous SV-40 promoter showed that NFAT transcriptional activity was significantly inhibited by all-trans-RA. Furthermore, all-trans-RA inhibited activation of the distal NFAT binding motif present in the interleukin (IL)-2 promoter, suggesting that the inhibition of NFAT function by all-trans-RA was not specific to the FasL promoter. Gel shift assays corroborated the results of the gene reporter studies by showing that all-trans-RA decreased the NFAT binding to DNA. All-trans-RA blocked translocation of NFATp from the cytosol into the nucleus, which was induced by PMA/ionomycin treatment in HeLa cells transfected with a Flag-tagged NFATp. Taken together, our results indicate that FasL inhibition by all-trans-RA involves a novel mechanism whereby the transcriptional function of NFAT is blocked.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.