Abstract

Malignant glioma is one of the most common primary human tumors in the central nervous system. The molecular mechanisms of the progression and development of glioma have been largely unexplored. In this study, we illustrated that the expression of Dok7 was downregulation in human glioma tissues. Dok7 overexpression significantly inhibits proliferation and colony formation in vitro, and the xenograft tumor formation in vivo. In addition, 5-Aza-2′-deoxycytidine (5-Aza), a DNA methylation inhibitor, preventing the loss of Dok7 expression by decreasing aberrant hypermethylation of Dok7 promoter in glioma cells. More importantly, DNMT1 knockdown induced the demethylation of Dok7 promoter, and enhanced the expression of Dok7 in gliomas. These results suggest that epigenetic silencing of Dok7 may provide a novel glioma treatment strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call