Abstract
AbstractPhoton diffusion in thermal barrier coatings (TBCs) significantly deteriorates the overall performance of gas turbines operating at high temperatures. This study presents the strategy of high‐temperature photon suppression, based on a ceramic composite consisting of the second component with a smaller refractive index and controlled particle size. Using the Mie theory, it is theoretically demonstrated that controlling the second component particle size closer/equal to the infrared radiation wavelength region (1–5 μm) could reduce photon diffusion. Ceramic composites comprised of 8 wt.% yttria‐stabilized zirconia (8YSZ, matrix) and corundum (second component) with different particle sizes were prepared. The total and the photon thermal conductivity of the 8YSZ/corundum composites are lower than pure 8YSZ by ∼48.9% and ∼96.4% at 1200°C, respectively. With the addition of corundum into 8YSZ, the thermal radiation transport of 8YSZ is significantly suppressed due to the photon scattering produced by the lower refractive index and proper particle size of the corundum. Besides, the fracture toughness and hardness of composites increased by ∼20% and ∼13%, respectively, compared to the 8YSZ. Composite with the corundum particles size of 1 μm displays the lowest values of total and photon thermal conductivity at high temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.