Abstract

Regulation of chromatin compaction is an important process that governs gene expression in higher eukaryotes. Although chromatin compaction and gene expression regulation are commonly disrupted in many diseases, a locus-specific, endogenous, and reversible method to study and control these mechanisms of action has been lacking. To address this issue, we have developed and characterized novel gene-regulating bifunctional molecules. One component of the bifunctional molecule binds to a DNA-protein anchor so that it will be recruited to an allele-specific locus. The other component engages endogenous cellular chromatin-modifying machinery, recruiting these proteins to a gene of interest. These small molecules, called chemical epigenetic modifiers (CEMs), are capable of controlling gene expression and the chromatin environment in a dose-dependent and reversible manner. Here, we detail a CEM approach and its application to decrease gene expression and histone tail acetylation at a Green Fluorescent Protein (GFP) reporter located at the Oct4 locus in mouse embryonic stem cells (mESCs). We characterize the lead CEM (CEM23) using fluorescent microscopy, flow cytometry, and chromatin immunoprecipitation (ChIP), followed by a quantitative polymerase chain reaction (qPCR). While the power of this system is demonstrated at the Oct4 locus, conceptually, the CEM technology is modular and can be applied in other cell types and at other genomic loci.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.