Abstract

A formalism is proposed for representing uncertain information on set-valued variables using the formalism of belief functions. A set-valued variable X on a domain Ω is a variable taking zero, one or several values in Ω. While defining mass functions on the frame 2 2 Ω is usually not feasible because of the double-exponential complexity involved, we propose an approach based on a definition of a restricted family of subsets of 2 Ω that is closed under intersection and has a lattice structure. Using recent results about belief functions on lattices, we show that most notions from Dempster–Shafer theory can be transposed to that particular lattice, making it possible to express rich knowledge about X with only limited additional complexity as compared to the single-valued case. An application to multi-label classification (in which each learning instance can belong to several classes simultaneously) is demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.