Abstract

We prove that every element of the special linear group can be represented as the product of at most six block unitriangular matrices, and that there exist matrices for which six products are necessary, independent of indexing. We present an analogous result for the general linear group. These results serve as general statements regarding the representational power of alternating linear updates. The factorizations and lower bounds of this work immediately imply tight estimates on the expressive power of linear affine coupling blocks in machine learning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.