Abstract
How is spatial information for limb movement encoded in the brain? Computational and psychophysical studies suggest that beginning hand position, via-points, and target are specified relative to the body to afford a comparison between the sensory (e.g., kinesthetic) reafferences and the commands that generate limb movement. Here we propose that the superior parietal lobule (Brodmann area 5) might represent a substrate for a body-centered positional code. Monkeys made arm movements in different parts of 3D space in a reaction-time task. We found that the activity of area 5 neurons can be related to either the starting point, or the final point, or combinations of the two. Neural activity is monotonically tuned in a body-centered frame of reference, whose coordinates define the azimuth, elevation, and distance of the hand. Each spatial coordinate tends to be encoded in a different subpopulation of neurons. This parcellation could be a neural correlate of the psychophysical observation that these spatial parameters are processed in parallel and largely independent of each other in man.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.