Abstract

Variation in disease risk underlying observed disease counts is increasingly a focus for Bayesian spatial modelling, including applications in spatial data mining. Bayesian analysis of spatial data, whether for disease or other types of event, often employs a conditionally autoregressive prior, which can express spatial dependence commonly present in underlying risks or rates. Such conditionally autoregressive priors typically assume a normal density and uniform local smoothing for underlying risks. However, normality assumptions may be affected or distorted by heteroscedasticity or spatial outliers. It is also desirable that spatial disease models represent variation that is not attributable to spatial dependence. A spatial prior representing spatial heteroscedasticity within a model accommodating both spatial and non-spatial variation is therefore proposed. Illustrative applications are to human TB incidence. A simulation example is based on mainland US states, while a real data application considers TB incidence in 326 English local authorities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.