Abstract

Rectangular propulsion nozzles have advantages over circular nozzles, including easier thrust-vectoring and air-frame-integration. Jet noise is easier to study with circular jets (CJ), however, due to azimuthal homogeneity, which, together with low-rank acoustic dynamics enables simpler acoustic models. Using Large Eddy Simulations of rectangular jets (RJ) of various aspect ratios we show that acoustic fluctuation components exhibit comparably rapid convergence in azimuthal Fourier space even for high aspect ratios. A reduced-order model for RJ that retains near-field acoustic asymmetry can be constructed using only three leading azimuthal modes, but with two additional terms relative to CJ.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call