Abstract

Accurately predicting new polymers' properties with machine learning models apriori to synthesis has potential to significantly accelerate new polymers' discovery and development. However, accurately and efficiently capturing polymers' complex, periodic structures in machine learning models remains a grand challenge for the polymer cheminformatics community. Specifically, there has yet to be an ideal solution for the problems of how to capture the periodicity of polymers, as well as how to optimally develop polymer descriptors without requiring human-based feature design. In this work, we tackle these problems by utilizing a periodic polymer graph representation that accounts for polymers' periodicity and coupling it with a message-passing neural network that leverages the power of graph deep learning to automatically learn chemically relevant polymer descriptors. Remarkably, this approach achieves state-of-the-art performance on 8 out of 10 distinct polymer property prediction tasks. These results highlight the advancement in predictive capability that is possible through learning descriptors that are specifically optimized for capturing the unique chemical structure of polymers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.