Abstract

Abstract Today's energy system models calculate power flows between simplified nodes representing transmission and distribution grid of a region or a country – so called copper plates. Such nodes are often restricted to a few tens thus the grid is not well represented or totally neglected in the whole energy system analysis due to limited computational performance using such models. Here we introduce our new methodology of node-internal grid calculation representing the electricity grid in cost values based on strong correlations between peak load, grid cost and feed-in share of wind and photovoltaic capacity. We validate in our case study this approach using a 491 node model for Germany. This examination area is modelled as enclosed energy system to calculate the grid in a 100% renewable energy system in 2050 enabling maximum grid expansion. Our grid model facilitates grid expansion cost and reduces computational effort. The quantification of the German electricity grid show that the grid makes up to 12% of total system cost equivalent up to 12 billion € per year.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.