Abstract

The STAR Heavy Flavor Tracker (HFT) was designed to provide high-precision tracking for the identification of charmed hadron decays in heavy-ion collisions at RHIC. It consists of three independently mounted subsystems, providing four precision measurements along the track trajectory, with the goal of pointing decay daughters back to vertices displaced by less than 100 microns from the primary event vertex. The ultimate efficiency and resolution of the physics analysis will be driven by the quality of the simulation and reconstruction of events in heavy-ion collisions. In particular, it is important that the geometry model properly accounts for the relative misalignments of the HFT subsystems, along with the alignment of the HFT relative to STARs primary tracking detector, the Time Projection Chamber (TPC).The Geometry Modeling Language (AgML) provides a single description of the STAR geometry, generating both our simulation (GEANT 3) and reconstruction geometries (ROOT). AgML implements an ideal detector model, while misalignments are stored separately in database tables. These have historically been applied at the hit level. Simulated detector hits are projected from their ideal position along the track’s trajectory, until they intersect the misaligned detector volume, where the struck detector element is calculated for hit digitization. This scheme has worked well as hit errors have been negligible compared with the size of sensitive volumes. The precision and complexity of the HFT detector require us to apply misalignments to the detector volumes themselves. In this paper we summarize the extension of the AgML language and support libraries to enable the static misalignment of our reconstruction and simulation geometries, discussing the design goals, limitations and path to full misalignment support in ROOT/VMC-based simulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.