Abstract

We prove that any knot or link in any [Formula: see text]-manifold can be nicely decomposed (split) by a filling Dehn sphere. This has interesting consequences in the study of branched coverings over knots and links. We give an algorithm for computing Johansson diagrams of filling Dehn surfaces out from coverings of [Formula: see text]-manifolds branched over knots or links.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.