Abstract
The central problem of this study is to represent any holomorphic and square integrable function on the Kepler manifold in the series form based on Fourier analysis. Because these function spaces are reproducing kernel Hilbert spaces (RKHS), three different domains on the Kepler manifold are considered and the weak pre-orthogonal adaptive Fourier decomposition (POAFD) is proposed on the domains. First, the weak maximal selection principle is shown to select the coefficient of the series. Furthermore, we prove the convergence theorem to show the accuracy of our method. This study is the extension of work by Wu et al. on POAFD in Bergman space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.