Abstract

Multioutput support vector regression (SVR) is implemented to simultaneously predict the selectivities and the CH4 conversion against experimental conditions in methane oxidation catalysts. The predictions unveil the details of how each selectivity and CH4 conversion behaves in each catalyst. In particular, the selectivity and the CH4 conversion of Mn-Na2WO4/SiO2, Ti-Na2WO4/SiO2, Pd-Na2WO4/SiO2, and Na2WO 4/SiO2 are predicted, and the effects of Mn, Ti, and Pd are unveiled. In addition, the trade-off points of CO and C2H6 are identified for each catalyst, leading to maximization of the C2H6 yield. Thus the simultaneous prediction of the reaction trend with catalysts not only will help with the understanding of the catalyst activities but also will provide guidance for designing the experimental conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.