Abstract

The zero locus of a generic section of a vector bundle over a manifold defines a submanifold. A classical problem in geometry asks to realise a specified submanifold in this way. We study two cases; a point in a generalised flag manifold and the diagonal in the direct product of two copies of a generalised flag manifold. These cases are particularly interesting since they are related to ordinary and equivariant Schubert polynomials respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.