Abstract

AbstractEnvironmental observatory networks (EONs) provide information to understand and forecast the spatial and temporal dynamics of Earth's biophysical processes. Consequently, representativeness analyses are important to provide insights for improving EONs' management, design, and interpretation of their value‐added products. We assessed the representativeness of registered FLUXNET sites (n = 41, revised on September 2018) across Latin America (LA), a region of great importance for the global carbon and water cycles, which represents 13% of the world's land surface. Nearly 46% of registered FLUXNET sites are located in evergreen broad‐leaf forests followed by sites in woody savannas (∼20%). Representativeness analyses were performed using a 0.05° spatial grid for multiple environmental variables, gross primary productivity (GPP), and evapotranspiration (ET). Our results showed a potential representativeness of 34% of the surface area for climate properties, 36% for terrain parameters, 34% for soil resources, and 45% when all aforementioned environmental variables were summarized into a principal component analysis. Furthermore, there was a 48% potential representativeness for GPP and 34% for ET. Unfortunately, data from these 41 sites are not all readily available for the scientific community, limiting synthesis studies and model benchmarking/parametrization. The implication is that global/regional data‐driven products are forced to use information from FLUXNET sites outside LA to predict patterns in LA. Representativeness could increase to 86% (for GPP) and 80% (for ET) if 200 sites are optimally distributed. We discussed ongoing challenges, the need to enhance interoperability and data sharing, and promote monitoring efforts across LA to increase the accuracy of regional‐to‐global data‐driven products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call