Abstract
The problem of nonlinear filtering of multiparameter random fields, observed in the presence of a long-range dependent spatial noise, is considered. When the observation noise is modelled by a persistent fractional Wiener sheet, several pathwise representations of the optimal filter are derived. The representations involve series of multiple stochastic integrals of different types and are particularly important since the evolution equations, satisfied by the best mean-square estimate of the signal random field, have a complicated analytical structure and fail to be proper (measure-valued) stochastic partial differential equations. Several of the above optimal filter representations involve a new family of strong martingale transforms associated to the multiparameter fractional Brownian sheet; the latter martingale family is of independent interest in fractional stochastic calculus of multiparameter random fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.