Abstract

During peritoneal dialysis solutes and water are transported across the peritoneum, a thin “membrane” lining the abdominal and pelvic cavities. Dialysis fluid containing an “osmotic agent”, usually glucose, is infused into the peritoneal space, and solutes and water pass from the blood into the dialysate (and vice versa). The complex physiological mechanisms of fluid and solute transport between blood and peritoneal dialysate are of crucial importance for the efficiency of this treatment (Flessner, 1991; Lysaght &Farrell, 1989). The major transport barrier is the capillary endothelium, which contains various types of pores. Capillaries are distributed in the tissue. Across the capillary walls, mainly diffusive transport of small solutes between blood and dialysate occurs. As the osmotic agent creates a high osmotic pressure in the dialysis fluid exceeding substantially the osmotic pressure of blood water is transported by osmosis from blood to dialysate and removed from the patient with spent dialysis fluid. At the same time the difference in hydrostatic pressures between dialysate (high hydrostatic pressure) and peritoneal tissue interstitium (lower hydrostatic pressure) causes water to be transported from dialysate to blood. In addition, there is a continuous lymphatic transport from dialysate and peritoneal tissue interstitium to blood. In this chapter a brief characteristic of the two most popular simple models describing transport of fluid and solutes between dialysate and blood during peritoneal dialysis is presented with the focus on their application and techniques for estimation of parameters which may be used to analyze clinically available data on peritoneal transport.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call