Abstract
Let $M= \left[ \begin{array}{cc} A& B \\ C& O \end{array} \right]$ be a complex square matrix where A is square. When BCB^{\Omega} =0, rank(BC) = rank(B) and the group inverse of $\left[ \begin{array}{cc} B^{\Omega} A B^{\Omega} & 0 \\ CB^{\Omega} & 0 \right]$ exists, the group inverse of M exists if and only if rank(BC + A)B^{\Omega}AB^{\Omega})^{\pi}B^{\Omega}A)= rank(B). In this case, a representation of $M^#$ in terms of the group inverse and Moore-Penrose inverse of its subblocks is given. Let A be a real matrix. The sign pattern of A is a (0,+,â)-matrix obtained from A by replacing each entry by its sign. The qualitative class of A is the set of the matrices with the same sign pattern as A, denoted by Q(A). The matrix A is called S^2GI, if the group inverse of each matrix \bar{A} in Q(A) exists and its sign pattern is independent of e A. By using the group inverse representation, a necessary and sufficient condition for a real block matrix to be an S^2GI-matrix is given.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.