Abstract

Abstract Neurocognitive models of semantic memory have proposed that the ventral anterior temporal lobes (vATLs) encode a graded and multidimensional semantic space—yet neuroimaging studies seeking brain regions that encode semantic structure rarely identify these areas. In simulations, we show that this discrepancy may arise from a crucial mismatch between theory and analysis approach. Utilizing an analysis recently formulated to investigate graded multidimensional representations, representational similarity learning (RSL), we decoded semantic structure from ECoG data collected from the vATL cortical surface while participants named line drawings of common items. The results reveal a graded, multidimensional semantic space encoded in neural activity across the vATL, which evolves over time and simultaneously expresses both broad and finer-grained semantic structure among animate and inanimate concepts. The work resolves the apparent discrepancy within the semantic cognition literature and, more importantly, suggests a new approach to discovering representational structure in neural data more generally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call