Abstract

AbstractWe show that for a normal locally-$\mathscr{P}$ space $X$ (where $\mathscr{P}$ is a topological property subject to some mild requirements) the subset ${C}_{\mathscr{P}} (X)$ of ${C}_{b} (X)$ consisting of those elements whose support has a neighborhood with $\mathscr{P}$, is a subalgebra of ${C}_{b} (X)$ isometrically isomorphic to ${C}_{c} (Y)$ for some unique (up to homeomorphism) locally compact Hausdorff space $Y$. The space $Y$ is explicitly constructed as a subspace of the Stone–Čech compactification $\beta X$ of $X$ and contains $X$ as a dense subspace. Under certain conditions, ${C}_{\mathscr{P}} (X)$ coincides with the set of those elements of ${C}_{b} (X)$ whose support has $\mathscr{P}$, it moreover becomes a Banach algebra, and simultaneously, $Y$ satisfies ${C}_{c} (Y)= {C}_{0} (Y)$. This includes the cases when $\mathscr{P}$ is the Lindelöf property and $X$ is either a locally compact paracompact space or a locally-$\mathscr{P}$ metrizable space. In either of the latter cases, if $X$ is non-$\mathscr{P}$, then $Y$ is nonnormal and ${C}_{\mathscr{P}} (X)$ fits properly between ${C}_{0} (X)$ and ${C}_{b} (X)$; even more, we can fit a chain of ideals of certain length between ${C}_{0} (X)$ and ${C}_{b} (X)$. The known construction of $Y$ enables us to derive a few further properties of either ${C}_{\mathscr{P}} (X)$ or $Y$. Specifically, when $\mathscr{P}$ is the Lindelöf property and $X$ is a locally-$\mathscr{P}$ metrizable space, we show that $$\begin{eqnarray*}\dim C_{\mathscr{P}}(X)= \ell \mathop{(X)}\nolimits ^{{\aleph }_{0} } ,\end{eqnarray*}$$ where $\ell (X)$ is the Lindelöf number of $X$, and when $\mathscr{P}$ is countable compactness and $X$ is a normal space, we show that $$\begin{eqnarray*}Y= {\mathrm{int} }_{\beta X} \upsilon X\end{eqnarray*}$$ where $\upsilon X$ is the Hewitt realcompactification of $X$.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call