Abstract

In this paper, a gate-all-around junctionless tunnel field effect transistor (JLTFET) based on heterostructure of compound and group III–V semiconductors is introduced and simulated. In order to blend the high tunneling efficiency of narrow band gap material JLTFETs and the high electron mobility of III–V JLTFETs, a type I heterostructure junctionless TFET adopting Ge–AlxGa1−xAs–Ge system has been optimized by numerical simulation in terms of aluminum (Al) composition. To improve device performance, we considered a nanowire structure, and it was illustrated that high-performance logic technology can be achieved by the proposed device. The optimal Al composition founded to be around 20 % (x = 0.2). The numerical simulation results demonstrate that the proposed device has low leakage current IOFF of ~1.9 × 10−17, ION of 4 µA/µm, ION/IOFF current ratio of 1.7 × 1011 and subthreshold swing SS of 12.6 mV/decade at the 40 nm gate length and temperature of 300 K.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.