Abstract

Previous studies of honey bee and cockroach mushroom bodies have proposed that afferent terminals and intrinsic neurons (Kenyon cells) in the calyces are arranged according to polar coordinates. It has been suggested that there is a transformation by Kenyon cell axons of the polar arrangements of their dendrites in the calyces to laminar arrangements of their terminals in the lobes. Findings presented here show that cellular organization in the calyx of an evolutionarily basal neopteran, Periplaneta americana, is instead rectilinear, as it is in the lobes. It is shown that each calyx is divided into two halves (hemicalyces), each supplied by its own set of Kenyon cells. Each calyx is separately represented in the medial lobe where the dendritic trees of some efferent neurons receive inputs from one calyx only. Kenyon cell dendrites are arranged as narrow elongated fields, organized as rows in each hemicalyx. Dendritic fields arise from 14 to 16 sheets of Kenyon cell axons stacked on top of each other lining the inner surface of the calyx cup. A sheet consists of approximately 60 small bundles, each containing 5-15 axons that converge from the rim of the calyx to its neck. Each sheet contributes to a pair oflaminae, one dark one pale, called a doublet, that extends through the mushroom body. Dark laminae contain Kenyon cell axons packed with synaptic vesicles. Axons in pale laminae are sparsely equipped with vesicles. By analogy with photoreceptors, and with reference to field potential recordings, it is speculated that dark laminae are continuously active, being modulated by odor stimuli, whereas pale laminae are intermittently activated. Timm's silver staining and immunocytology reveal a second type of longitudinal division of the lobes. Five layers extend through the pedunculus and lobes, each composed of subsets of doublets. Four layers represent zones of afferent endings in the calyces. A fifth (the y layer) represents a specific type of Kenyon cell. It is concluded that the mushroom bodies comprise two independent modular systems, doublets and layers. Developmental studies show that new doublets are added at each instar to layers that are already present early in second instar nymphs. There are profound similarities between the mushroom bodies of Periplaneta, an evolutionarily basal taxon, and those of Drosophila melanogaster and the honey bee.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.