Abstract

In visual perception, object identification requires both the ability to define regions of uniform luminance and zones of luminance contrast. Neural processes underlying contrast detection have been well studied, while those defining luminance remain poorly understood and controversial. Partially because stimuli comprised of uniform luminance are relatively ineffective in driving responses of cortical neurons, little effort has been made to systematically compare responses of individual neurons to both uniform luminance and contrast. Using large static uniform luminance and contrast stimuli, modulated temporally in luminance or contrast, we found a continuum of responses ranging from a few cells modulated only by luminance (luminance-only), to many cells modulated by both luminance and contrast (luminance-contrast), and to many others modulated only by contrast (contrast-only) in primary visual cortex. Moreover, luminance-contrast cells had broader orientation tuning, larger receptive field (RF) and lower spatial frequency Preference, on average, than contrast-only cells. Contrast-only cells had contrast responses more linearly correlated to the spatial structure of their RFs than luminance-contrast cells. Taken together these results suggest that luminance and contrast are represented, to some degree, by independent mechanisms that may be shaped by different classes of subcortical and/or cortical inputs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.