Abstract

Determining stress intensity factors (SIFs) is a difficult task either analytically or experimentally. The difficulty arises from the fact that there is no simple and accurate expression for the SIFs under general circumstances. As a result, the determination of the SIFs is usually a complex process. For finding a suitable expression for the SIFs, the first stress invariant and anti-plane displacement are analyzed, and Green's theorem is used. It is found that the stress intensity factors can be represented by path integrals involving only the first stress invariant or anti-plane displacement for general two-dimensional static problems. KI and KII are represented by path integrals of the first stress invariant and its partial derivative. KIII is represented by a path integral of the anti-plane displacement as well as its partial derivative. The integrals are path-independent and valid for an arbitrarily shaped elastic medium with stationary cracks of arbitrary shape. They are also valid for a body containing isolated inhomogeneities such as holes and inclusions. If a crack is straight near its tip, and if the straight portion of the crack can be treated as a cut along the radius of a simply connected circular disk, there exists another kind of integrals representation that does not include the partial derivative terms in the representation for KI. The representation by these integrals provides a new approach to determine the SIFs experimentally, which is simpler and more accurate. This is because the integrals are exact expressions for the SIFs and involve only the first stress invariant or anti-plane displacement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.