Abstract

The echolocating big brown bat, Eptesicus fuscus, broadcasts brief frequency-modulated (FM) ultrasonic sounds and perceives objects from echoes of these sounds returning to its ears. Eptesicus is an insectivorous species that uses sonar to locate and track flying prey. Although the bat normally hunts in open areas, it nevertheless is capable of chasing insects into cluttered environments such as vegetation, where it completes interceptions in much the same manner as in the open except that it has to avoid the obstacles as well as catch the insect. During pursuit, the bat shortens its sonar signals and increases their rate of emission as it closes in to seize the target, and it keeps its head pointed at the insect throughout the maneuver. In the terminal stage of interception, the bat makes rapid adjustments in its flight-path and body posture to capture the insect, and these reactions occur whether the bat is pursuing its prey in the open or close to obstacles such as vegetation. Insects can be distinguished from other objects by the spectrum and phase of their echoes, and Eptesicus is very good at discriminating these acoustic features. To identify the insect in the open, but especially to distinguish which object is the insect in clutter, the bat must have some means for representing these features throughout the interception maneuver. Moreover, continuity for perception of these features is necessary to keep track of the prey in complex surroundings, so the nature of the auditory representations for the spectrum and phase of echoes has to be conserved across the approach, tracking, and terminal stages. The first problem is that representation of changes in the phase of echoes requires neural responses in the bat's auditory system to have temporal precision in the microsecond range, which seems implausible from conventional single-unit studies in the bat's inferior colliculus, where the temporal jitter of responses typically is hundreds of microseconds. Another problem is that echoes do not explicitly evoke neural responses in the inferior colliculus distinct from responses evoked by the broadcast during the terminal stage because the delay of echoes is too short for responsiveness to recover from the emissions. In contrast, each emission and each echo evokes its own responses during the approach and tracking stages of pursuit. How does the bat consistently represent the phase of echoes in spite of these evident limitations in neural responses? Local multiunit responses recorded from the inferior colliculus of Eptesicus reveal a novel format for encoding the phase of echoes at all stages of interception. Changes in echo phase (0 degree or 180 degrees) produce shifts in the latency of responses to the emission by hundreds of microseconds, an unexpected finding that demonstrates the existence of expanded time scales in neural responses representing the target at all stages of pursuit.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call