Abstract

A representation for polygons and polygonal lines is described which allows sets of consecutive sides to be collectively examined. The set of sides are arranged in a binary tree hierarchy by inclusion. A fast algorithm for testing the inclusion of a point in a many-sided polygon is given. The speed of the algorithm is discussed for both ideal and practical examples. It is shown that the points of intersection of two polygonal lines can be located by what is essentially a binary tree search. The algorithm and a practical example are discussed. The representation overcomes many of the disadvantages associated with the various fixed-grid methods for representing curves and regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.