Abstract
It is shown that a convolution with certain reasonable receptive field (RF) profiles yields the exact partial derivatives of the retinal illuminance blurred to a specified degree. Arbitrary concatenations of such RF profiles yield again similar ones of higher order and for a greater degree of blurring. By replacing the illuminance with its third order jet extension we obtain position dependent geometries. It is shown how such a representation can function as the substrate for "point processors" computing geometrical features such as edge curvature. We obtain a clear dichotomy between local and multilocal visual routines. The terms of the truncated Taylor series representing the jets are partial derivatives whose corresponding RF profiles closely mimic the well known units in the primary visual cortex. Hence this description provides a novel means to understand and classify these units. Taking the receptive field outputs as the basic input data one may devise visual routines that compute geometric features on the basis of standard differential geometry exploiting the equivalence with the local jets (partial derivatives with respect to the space coordinates).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.