Abstract
Network representation learning offers a revolutionary paradigm for mining and learning with network data. In this tutorial, we will give a systematic introduction for representation learning on networks. We will start the tutorial with industry examples from Alibaba, AMiner, Microsoft Academic, WeChat, and XueTangX to explain how network analysis and graph mining on the Web are benefiting from representation learning. Then we will comprehensively introduce both the history and recent advances on network representation learning, such as network embedding and graph neural networks. Uniquely, this tutorial aims to provide the audience with the underlying theories in network representation learning, as well as our experience in translating this line of research into real-world applications on the Web. Finally, we will release public datasets and benchmarks for open and reproducible network representation learning research. The tutorial accompanying page is at https://aminer.org/nrl_www2019.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.