Abstract

In this paper, we use deep representation learning for model-based single-channel source separation (SCSS) and artificial bandwidth extension (ABE). Both tasks are ill-posed and source-specific prior knowledge is required. In addition to well-known generative models such as restricted Boltzmann machines and higher order contractive autoencoders two recently introduced deep models, namely generative stochastic networks (GSNs) and sum-product networks (SPNs), are used for learning spectrogram representations. For SCSS we evaluate the deep architectures on data of the 2 $^{\rm nd}$ CHiME speech separation challenge and provide results for a speaker dependent, a speaker independent, a matched noise condition and an unmatched noise condition task. GSNs obtain the best PESQ and overall perceptual score on average in all four tasks. Similarly, frame-wise GSNs are able to reconstruct the missing frequency bands in ABE best, measured in frequency-domain segmental SNR. They outperform SPNs embedded in hidden Markov models and the other representation models significantly.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.