Abstract

A promising approach to overcome the various shortcomings of password systems is the use of biometric authentication, in particular the use of electroencephalogram (EEG) data. In this paper, we propose a subject-independent learning method for EEG-based biometrics using Hilbert spectrograms of the data. The proposed neural network architecture treats the spectrogram as a collection of one-dimensional series and applies one-dimensional dilated convolutions over them, and a multi-similarity loss was used as the loss function for subject-independent learning. The architecture was tested on the publicly available PhysioNet EEG Motor Movement/Imagery Dataset (PEEGMIMDB) with a 14.63% Equal Error Rate (EER) achieved. The proposed approach’s main advantages are subject independence and suitability for interpretation via created spectrograms and the integrated gradients method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call