Abstract
We study the representation growth of alternating and symmetric groups in positive characteristic and restricted representation growth for the finite groups of Lie type. We show that the number of representations of dimension at most n is bounded by a low-degree polynomial in n. As a consequence, we show that the number of conjugacy classes of maximal subgroups of a finite almost simple group G is at most O((log|G|)3).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.