Abstract

We provide a novel, flexible, iterative refinement algorithm to automatically construct an approximate statespace representation for Markov Decision Processes (MDPs). Our approach leverages bisimulation metrics, which have been used in prior work to generate features to represent the state space of MDPs. We address a drawback of this approach, which is the expensive computation of the bisimulation metrics. We propose an algorithm to generate an iteratively improving sequence of state space partitions. Partial metric computations guide the representation search and provide much lower space and computational complexity, while maintaining strong convergence properties. We provide theoretical results guaranteeing convergence as well as experimental illustrations of the accuracy and savings (in time and memory usage) of the new algorithm, compared to traditional bisimulation metric computation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.