Abstract
We study Auslander's representation dimension of Artin algebras, which is by definition the minimal projective dimension of coherent functors on modules which are both generators and cogenerators. We show the following statements: (1) if an Artin algebra A is stably hereditary, then the representation dimension of A is at most 3. (2) If two Artin algebras are stably equivalent of Morita type, then they have the same representation dimension. Particularly, if two self-injective algebras are derived equivalent, then they have the same representation dimension. (3) Any incidence algebra of a finite partially ordered set over a field has finite representation dimension. Moreover, we use results on quasi-hereditary algebras to show that (4) the Auslander algebra of a Nakayama algebra has finite representation dimension.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.