Abstract

The analysis of people’s comments in social platforms is a widely investigated topic because comments are the place where people show their spontaneity most clearly. In this article, we present a network-based data structure and a related approach to represent and manage the underlying semantics of a set of comments. Our approach is based on the extraction of text patterns that take into account not only the frequency, but also the utility of the analysed comments. Our data structure and approach are ‘multidimensional’ and ‘holistic’, in the sense that they can simultaneously handle content semantics from multiple perspectives. They are also easily extensible, because additional content semantics perspectives can be easily added to them. Furthermore, our approach is able to evaluate the semantic similarity of two sets of comments. In this article, we also illustrate the results of several tests we conducted on Reddit comments, even if our approach can be applied to any social platform. Finally, we provide an overview of some possible applications of this research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.