Abstract
The interaction between a tool and part during composites processing contributes to the formation of residual stresses and dimensional changes. A resultant mismatch of part geometries during assembly can cause a potential loss of mechanical performance in aerospace structures. Costly shimming steps are needed to compensate for processinduced deformations and satisfy specifications on mechanical performance. Due to difficulties associated with accurate measurement of interfacial shear stresses, current analysis methods fail to represent the interaction between a tool and part throughout processing. A combined approach to represent, characterize, and simulate tool-part interaction and its effects on dimensional changes is proposed. First, a characterization method was established using a custom Dynamic Mechanical Analysis (DMA) shear test setup to measure tool-part interfacial stress development in a simulated autoclave curing environment. Tool-part interfacial stresses were characterized for Toray T800S/3900-2 UD prepreg as a function of temperature, degree of cure, strain rate, and tool surface condition. Then, a previously developed numerical model was modified to include the effects of tool-part interaction in predicting dimensional changes of L-shape parts. For validation, composite parts were fabricated on tools with different surface conditions and successfully compared to simulation results. This paper demonstrates that tool-part interaction significantly impacts the spring-in of angled composite parts. The proposed method is a comprehensive and practical approach to study and simulate the effects of tool-part interaction. The results of this paper can be used to understand the complex interaction between a tool and part throughout processing and potentially mitigate processinduced deformations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.