Abstract
Complex interventions are ubiquitous in healthcare. A lack of computational representations and information extraction solutions for complex interventions hinders accurate and efficient evidence synthesis. In this study, we manually annotated and analyzed 3,447 intervention snippets from 261 randomized clinical trial (RCT) abstracts and developed a compositional representation for complex interventions, which captures the spatial, temporal and Boolean relations between intervention components, along with an intervention normalization pipeline that automates three tasks: (i) treatment entity extraction; (ii) intervention component relation extraction; and (iii) attribute extraction and association. 361 intervention snippets from 29 unseen abstracts were included to report on the performance of the evaluation. The average F-measure was 0.74 for treatment entity extraction on an exact match and 0.82 for attribute extraction. The F-measure for relation extraction of multi-component complex interventions was 0.90. 93% of extracted attributes were correctly attributed to corresponding treatment entities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.