Abstract

This study presents a novel computing technique for data exchange and coupling between a high-resolution weather simulation model and a building energy model, with a goal of evaluating the impact of urban weather boundary conditions on energy performance of urban buildings. The Weather Research and Forecasting (WRF) model is initialized with the operational High-Resolution Rapid Refresh (HRRR) dataset to provide hourly weather conditions over the Chicago region. We utilize the building footprint, land use, and building stock datasets to generate building energy models using EnergyPlus. We mapped the building exterior surfaces to local air nodes to import simulated microclimate data and to export buildings' heat emissions to their local environment. Preliminary experiments for a test area in Chicago show that predicted building cooling energy use differs by about 4.7% for the selected date when compared with simulations using TMY weather data and without considering the urban microclimate boundary conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.